Machine Learning-Based Estimation of Hourly GNSS Precipitable Water Vapour

Author:

Adavi Zohreh1ORCID,Ghassemi Babak2ORCID,Weber Robert1,Hanna Natalia1

Affiliation:

1. Department of Geodesy and Geoinformation, TU Wien, Wiedner Hauptstraße 8, 1040 Vienna, Austria

2. Institute of Geomatics, University of Natural Resources and Life Sciences, BOKU, Peter-Jordan-Straße 82, 1190 Vienna, Austria

Abstract

Water vapour plays a key role in long-term climate studies and short-term weather forecasting. Therefore, to understand atmospheric variations, it is crucial to observe water vapour and its spatial distribution. In the current era, Global Navigation Satellite Systems (GNSS) are widely used to monitor this critical atmospheric component because GNSS signals pass through the atmosphere, allowing us to estimate water vapour at various locations and times. The amount of precipitable water vapour (PWV) is one of the most fascinating quantities, which provides meteorologists and climate scientists with valuable information. However, calculating PWV accurately from processing GNSS observations usually requires the input of further observed meteorological parameters with adequate quality and latency. To bypass this problem, hourly PWVs without meteorological parameters are computed using the Random Forest and Artificial Neural Network algorithms in this research. The first step towards this objective is establishing a regional weighted mean temperature model for Austria. To achieve this, measurements of radiosondes launched from different locations in Austria are employed. The results indicate that Random Forest is the most accurate method compared to regression (linear and polynomial), Artificial Neural Network, and empirical methods. PWV models are then developed using data from 39 GNSS stations that cover Austria’s entire territory. The models are afterwards tested under different atmospheric conditions with four radiosonde stations. Based on the obtained results, the Artificial Neural Network model with a single hidden layer slightly outperforms other investigated models, with only a 5% difference in mean absolute error. As a result, the hourly PWV can be estimated without relying on measured meteorological parameters with an average mean absolute error of less than 2.5 mm in Austria.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3