Moisture Transport and Contribution to the Continental Precipitation

Author:

Yang Yazhu,Liu ChunleiORCID,Ou Niansen,Liao XiaoqingORCID,Cao NingORCID,Chen Ni,Jin Liang,Zheng Rong,Yang Ke,Su Qianye

Abstract

Understanding the water cycle change under a warming climate is essential, particularly the ocean to land moisture transport, which affects the precipitation over land areas and influences society and the ecosystem. Using ERA5 data from 1988 to 2020, the time series of moisture transport and the trend across the boundary of each continent, including Eurasia, Africa, North America, South America, Antarctic, Australia, and Greenland, have been investigated. The inflow and outflow sections of the moisture have been identified for each continent. The trends of moisture convergence over Eurasia, Africa, North America, and Antarctic are all positive, with the values of 2.59 ± 3.12, 2.60 ± 3.17, 12.98 ± 2.28, and 0.32 ± 0.47 (in 106 kg/s/decade), respectively, but only the trend over North America is statistically significant at a 0.1 significance level. The moisture convergence trend of −0.59 ± 3.63 (in 106 kg/s/decade) over South America is negative but insignificant. The positive trend of 0.10 ± 0.35 (in 106 kg/s/decade) over Greenland is very weak. The precipitation, evaporation, and moisture convergence are well balanced at middle and low latitudes, but the combination of moisture convergence and evaporation is systematically lower than the precipitation over Antarctic and Greenland. Contributions of evaporation and moisture convergence (or transport) to the continental precipitation vary with the continent, but the moisture convergence dominates the precipitation variability over all continents, and the significant correlation coefficients between the anomaly time series of continental mean moisture convergence and precipitation are higher than 0.8 in all continents.

Funder

National Natural Science Foundation of China

Fujian Key Laboratory of Severe Weather

scientific research start-up grant of Guangdong Ocean University

Postgraduate Education Innovation Project of Guangdong Ocean University

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3