Gas Emissions and Environmental Benefits of Wheat Cultivated under Different Fertilization Managements in Mollisols

Author:

Liu Chunzhu,Zhou MengORCID,Zhu Yingxue,Ma Xianfa,Wang Qi,Xu Lianzhou,Zhao Ying,Zou Wenxiu

Abstract

The NH3, N2O and CO2 emissions from farmland soil pose a great threat to the environment, and the application of organic fertilizer and other reasonable fertilization measures can reduce soil gas emissions. However, research into greenhouse gas emissions and environmental benefits under the combined measures of partial substitution of organic fertilizer and phased application of chemical fertilizer is limited. Herein, a field experiment involving soil gas emission monitoring was conducted to study the effects of chemical fertilizer application in stages on Mollisols’ gas emissions and environmental benefits based on the partial replacement of chemical fertilizer with organic fertilizer. Five treatments were set up, including conventional nitrogen application (CF); no nitrogen application (N0); and one-stage (N1), two-stage (N2) and three-stage (N3) application of chemical nitrogen based on 25% of chemical nitrogen being replaced with organic fertilizer. The results showed that N1 had the best emission reduction. Compared with CF, N1 reduced NH3 volatilization and N2O and CO2 emission accumulation by 27.64%, 12.09% and 15.48%, respectively. Compared with N2 and N3, N1 could better reduce the soil urease, nitrate reductase, catalase and β-glucosidase activities, reduce the rate of the conversion of urea and organic carbon, increase the content of NH4+-N in the soil and reduce the NH3 volatilization rate and N2O and CO2 emission rates. A comprehensive analysis showed that N1 showed the best effects in reducing the soil gas emission rate, and environmental cost.

Funder

postdoctoral scientific research developmental fund of Heilongjiang Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3