Advanced Oxidation Processes to Reduce Odor Emissions from Municipal Wastewater—Comprehensive Studies and Technological Concepts

Author:

Dębowski MarcinORCID,Kazimierowicz JoannaORCID,Zieliński MarcinORCID

Abstract

Municipal facilities can generate odors caused by substances such as fatty acids, organosulfur compounds, aldehydes, and inorganic gases, especially H2S. Identifying an effective and cost-efficient solution to the problem is a priority for communities in areas at risk of exposure to odors. The aim of this study was to evaluate the effect of advanced oxidation processes (AOPs) involving Fenton’s reagents (Fe2+/H2O2, Fe3+/H2O2) on wastewater profiles and their capacity to reduce putrescibility, H2S emissions, and odor concentration in the air. The Fe2+/H2O2 system proved to be the most efficient in terms of inhibiting the process of redox conditions development, removing organic matter in the wastewater, inhibiting H2S formation, and reducing odor emissions. H2S generation in raw wastewater was triggered as early as on day 2 of anaerobic retention, with levels of 5.6 ppm to 64 ppm. After introduction of 0.1 g Fe2+/dm3 and 2.0 g H2O2/dm3, no H2S was detected in the gas for 8 days. The odor concentration (OC) of raw wastewater (2980 ± 110 oue/m3) was reduced by 96.3 ± 1.9% to a level of 100 ± 15 oue/m3. The Fe2+/H2O2 system maintained its oxidizing capacity up until day 7, with OC reduction by 96.0 ± 0.8% to a level of 120 ± 10 oue/m3. On day 10, the OC showed a marked increase to a level 1310 ± 140 oue/m3. The conducted research has proven that Fenton-based AOP systems are a technologically and commercially viable method of deodorization of sewage facilities.

Funder

Minister of Education and Science

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference64 articles.

1. Development of A Biosensor for Measuring Odorants in the Ambient Air Near Solid Waste Management Facilities Final Report;Meeroff,2021

2. Optimisation of methane fermentation as a valorisation method for food waste products

3. Chemical Oxygen Demand Reduction Of Various Wastewater Types Using Magnetic Field-assisted Fenton Reaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3