The Analytic Hierarchy Process Method to Design Applicable Decision Making for the Effective Removal of 2-mib and Geosmin in Water Sources

Author:

Ozgur Cihan1ORCID

Affiliation:

1. Isparta University of Applied Sciences

Abstract

Abstract Numerous utilities encounter issues with taste and odor that alter the public's impression of the safety of drinking water. The creation of certain components in water naturally due to global climate change is another source of taste and odor components, in addition to industrial emissions. Geosmin and 2-methylisoborneol (2-MIB), both of which are generated by blue-green algae and actinomycetes, are two substances that contribute to the musty and earthy smells in drinking water sources. Unfortunately, current conventional treatment plants partially remove 2-MIB and geosmin. Therefore, to safeguard the environment and public health, current treatment methods should be applied to outdated treatment facilities. Best treatment practices, evaluation standards, and decision-making approaches, however, are still shrouded in mystery. The goal of this study was to identify the most effective treatment options for 2-MIB and geosmin. By using the analytical hierarchy process (AHP), a total of 22 assessment criteria were found and prioritized. A thorough literature search led to the identification of potential treatment options, and their effectiveness was evaluated. These options and priority rankings were decided upon using AHP in the decision-making process. Advanced oxidation techniques came out on top in the final priority ranking, followed by membrane filtering, adsorption, oxidation, hybrid processes, and traditional treatment methods. The applied analytical decision techniques may also be used to choose the optimal treatment options, even though the results are particular to 2-MIB and geosmin.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3