In-Pixel Temperature Sensors with an Accuracy of ±0.25 °C, a 3σ Variation of ±0.7 °C in the Spatial Domain and a 3σ Variation of ±1 °C in the Temporal Domain

Author:

Abarca Accel,Theuwissen Albert

Abstract

This article presents in-pixel (of a CMOS image sensor (CIS)) temperature sensors with improved accuracy in the spatial and the temporal domain. The goal of the temperature sensors is to be used to compensate for dark (current) fixed pattern noise (FPN) during the exposure of the CIS. The temperature sensors are based on substrate parasitic bipolar junction transistor (BJT) and on the nMOS source follower of the pixel. The accuracy of these temperature sensors has been improved in the analog domain by using dynamic element matching (DEM), a temperature independent bias current based on a bandgap reference (BGR) with a temperature independent resistor, correlated double sampling (CDS), and a full BGR bias of the gain amplifier. The accuracy of the bipolar based temperature sensor has been improved to a level of ±0.25 °C, a 3σ variation of ±0.7 °C in the spatial domain, and a 3σ variation of ±1 °C in the temporal domain. In the case of the nMOS based temperature sensor, an accuracy of ±0.45 °C, 3σ variation of ±0.95 °C in the spatial domain, and ±1.4 °C in the temporal domain have been acquired. The temperature range is between −40 °C and 100 °C.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3