Abstract
We characterize an affordable method of producing stencils for submillimeter physical vapor deposition (PVD) by using paper and a benchtop laser cutter. Patterning electrodes or similar features on top of organic or biological substrates is generally not possible using standard photolithography. Shadow masks, traditionally made of silicon-based membranes, circumvent the need for aggressive solvents but suffer from high costs. Here, we evaluate shadow masks fabricated by CO2 laser processing from quantitative filter papers. Such papers are stiff and dimensionally stable, resilient in handling, and cut without melting or redeposition. Using two exemplary interdigitated electrode designs, we quantify the line resolution achievable with both high-quality and standard lenses, as well as the positional accuracy across multiple length scales. Additionally, we assess the gap between such laser-cut paper masks and a substrate, and quantify feature reproduction onto polycarbonate membranes. We find that ~100 µm line widths are achievable independent of lens type and that average positional accuracy is better than ±100 µm at 4”-wafer scale. Although this falls well short of the micron-size features achievable with typical shadow masks, resolution in the tenths to tens of millimeters is entirely sufficient for applications from contact pads to electrochemical cells, allowing new functionalities on fragile materials.
Funder
Knut och Alice Wallenbergs Stiftelse
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献