Physico-Chemical Properties of Red Pepper (Capsicum annuum L.) as Influenced by Different Drying Methods and Temperatures

Author:

A Anjaneyulu,Sharangi Amit BaranORCID,Upadhyay Tarun KumarORCID,Alshammari Nawaf,Saeed MohdORCID,Al-Keridis Lamya Ahmed

Abstract

An experiment was carried out in the laboratories of the Department of Food Engineering, Department of Vegetable Science, and Department of Plantation Spices Medicinal and Aromatic crops, Bidhan Chandra Krishi Viswavidyalaya (BCKV), West Bengal, India. The work was performed during 2018–2019 and 2019–2020 with different drying methods including sun drying, solar drying and oven drying. In oven drying, different temperatures such as 50, 55, 60, 65, and 70 °C were considered. A randomized complete block design (RCBD) was designed with seven treatments and three replications. Experimental results were significantly varied among the treatments as influenced by different drying methods and temperatures. Minimum time taken (480 min) to reach safe moisture content was recorded in T7 (oven drying at 70 °C), whereas maximum values in color components such as L* value (24.55), a* value (32.14), b* value (20.53), and pungency score (7.85) were recorded in T6 (oven drying at 65 °C). However, the highest texture (1180.81) was observed in T1 (sun drying). Biochemical parameters were significantly varied among the treatments. The maximum amounts of ascorbic acid (56.06 mg/100 g) and oleoresin content (10.72) were found in T3 (oven drying at 50 °C), whereas minimum values of biochemical parameters were recorded by T1 (sun drying) and T2 (solar drying) methods, respectively. Mathematical relationships were found in different drying methods and temperatures. Models such as the Lewis, Page, Modified Page, and Henderson and Pabis models were selected to fit the data. Maximum R2 value (0.9835) was found in both the Page and Modified Page models with similar values of drying method and temperature at 65 °C. This value was the highest among all models in all drying temperatures. However, the lowest χ2, and RMSE values (0.000818 and 0.027261, respectively) were recorded with the Page model.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3