Feature Adaptive and Cyclic Dynamic Learning Based on Infinite Term Memory Extreme Learning Machine

Author:

AL-Khaleefa Ahmed,Ahmad Mohd,Isa Azmi,Esa Mona,AL-Saffar Ahmed,Hassan Mustafa

Abstract

Online learning is the capability of a machine-learning model to update knowledge without retraining the system when new, labeled data becomes available. Good online learning performance can be achieved through the ability to handle changing features and preserve existing knowledge for future use. This can occur in different real world applications such as Wi-Fi localization and intrusion detection. In this study, we generated a cyclic dynamic generator (CDG), which we used to convert an existing dataset into a time series dataset with cyclic and changing features. Furthermore, we developed the infinite-term memory online sequential extreme learning machine (ITM-OSELM) on the basis of the feature-adaptive online sequential extreme learning machine (FA-OSELM) transfer learning, which incorporates an external memory to preserve old knowledge. This model was compared to the FA-OSELM and online sequential extreme learning machine (OSELM) on the basis of data generated from the CDG using three datasets: UJIndoorLoc, TampereU, and KDD 99. Results corroborate that the ITM-OSELM is superior to the FA-OSELM and OSELM using a statistical t-test. In addition, the accuracy of ITM-OSELM was 91.69% while the accuracy of FA-OSELM and OSELM was 24.39% and 19.56%, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Extreme Learning Machines (ELMs) for intelligent intrusion detection systems: A survey;Expert Systems with Applications;2024-11

2. Delay Tolerant and Multipath Reliability for Energy Efficient Heterogeneous VANETs Network;2023 1st International Conference on Advanced Engineering and Technologies (ICONNIC);2023-10-14

3. A Look at The 3GPP Standard’s Current Positioning of 5G Networks;2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT);2023-07-04

4. Improving Energy Consumption In IoT Networks: Reducing Sensors Energy By Timing Control;2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT);2023-07-04

5. Text Classification Accuracy Enhancement Using Deep Neural Networks;2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT);2023-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3