Study on Driving Decision-Making Mechanism of Autonomous Vehicle Based on an Optimized Support Vector Machine Regression

Author:

Zhang Junyou,Liao Yaping,Wang Shufeng,Han Jian

Abstract

Driving Decision-making Mechanism (DDM) is identified as the key technology to ensure the driving safety of autonomous vehicle, which is mainly influenced by vehicle states and road conditions. However, previous studies have seldom considered road conditions and their coupled effects on driving decisions. Therefore, road conditions are introduced into DDM in this paper, and are based on a Support Vector Machine Regression (SVR) model, which is optimized by a weighted hybrid kernel function and a Particle Swarm Optimization (PSO) algorithm, this study designs a DDM for autonomous vehicle. Then, the SVR model with RBF (Radial Basis Function) kernel function and BP (Back Propagation) neural network model are tested to validate the accuracy of the optimized SVR model. The results show that the optimized SVR model has the best performance than other two models. Finally, the effects of road conditions on driving decisions are analyzed quantitatively by comparing the reasoning results of DDM with different reference index combinations, and by the sensitivity analysis of DDM with added road conditions. The results demonstrate the significant improvement in the performance of DDM with added road conditions. It also shows that road conditions have the greatest influence on driving decisions at low traffic density, among those, the most influential is road visibility, then followed by adhesion coefficient, road curvature and road slope, while at high traffic density, they have almost no influence on driving decisions.

Funder

Natural Science Foundation of China

Outstanding Young Scientists Research Award Foundation of Shandong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3