Abstract
TiO2-loaded poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-coHFP) membranes were produced by supercritical CO2-assisted phase inversion. Three different TiO2 loadings were tested: 10, 20, and 30 wt% with respect to the polymer. Increasing the TiO2 amount from 10 wt% to 20 wt% in the starting solution, the transition from leafy-like to leafy-cellular morphology was observed in the section of the membrane. When 30 wt% TiO2 was used, the entire membrane section showed agglomerates of TiO2 nanoparticles. These polymeric membranes were tested to remove Sudan Blue II (SB) dye from aqueous solutions. The adsorption/photocatalytic processes revealed that membrane morphology and TiO2 cluster size were the parameters that mainly affected the dye removal efficiency. Moreover, after five cycles of exposure of these membranes to UV light, SB removal was higher than 85%.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献