Microstructure Evolution and Enhanced Hot Workability of TiC/Ti-6Al-4V Composites Fabricated by Melt Hydrogenation

Author:

Wang Xuan,Chen Siyu,Tan Yingmei,Yao LonghuiORCID,Wang Liang,Su Yanqing,Guo Jingjie

Abstract

Improving the hot workability and reducing the processing cost are critical steps to expanding the application of TiC/Ti-6Al-4V composites. This study employed melt hydrogenation to fabricate TiC/Ti-6Al-4V composites under a mixed atmosphere of hydrogen and argon. Experimental results indicated that hydrogen had an obvious influence on the growth and morphology of eutectic TiC particles, and the size of eutectic TiC and primary β grains was significantly increased. As a result, large-sized eutectic TiC was distributed along the grain boundaries of primary β grains. Hot compression results showed that the peak flowing stress of composites was reduced by hydrogen, which resulted in an improvement of hot workability, especially in the (α + β) phase region, and the best results were obtained at 900 °C/0.01 s−1, at which the peak stress decreased from 241 ± 9 to 190 ± 8 MPa (a decrease of 21.2%). Inspection of the microstructure after hot compression showed that hydrogen improved the proportion of DRX grains from ~62.7% to ~83.2%, and hydrogen also decreased the density of dislocations, which were attributed to hydrogen accelerating atomic diffusion. Enhanced hot workability resulted from hydrogen atoms decreasing the atomic bonding force of the titanium matrix, hydrogen reducing the β/(α + β) transition temperature, the higher proportion of DRX, and the higher mobility of dislocations. It is expected that the findings of this study may support the development of a simple and efficient method to reduce the processing cost of TiC/Ti-6Al-4V composites.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3