Effects of Melt Hydrogenation on the Microstructure Evolution and Hot Deformation Behavior of TiBw/Ti-6Al-4V Composites

Author:

Yan Hui1,Wang Liang1,Wang Xiaoming2,Jiang Botao1ORCID,Liu Hongcan1,Wang Binbin1,Luo Liangshun1,Su Yanqing1,Guo Jingjie1,Fu Hengzhi1

Affiliation:

1. National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China

Abstract

In this study, Ti-6Al-4V matrix composites reinforced with TiB ceramic whiskers were in situ synthesized and hydrogenated using the melt hydrogenation technique (MHT). The effects of MHT on the microstructure evolution and hot compression behavior of the composites were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Hot compression tests were performed at strain rates of 0.1/s, 0.01/s, and 0.001/s and temperatures of 800 °C, 850 °C, and 900 °C; the hot workability of composites significantly improved after hydrogenation, for example, the 900 °C peak flow stress of hydrogenated composites (43 MPa) decreased by 53.76% compared with that of unhydrogenated ones (93 MPa) at a strain rate of 0.01/s. Microstructural observations show that MHT can effectively facilitate the dispersion of TiB whiskers and induce the α/β lath refinement of the matrix in our as-cast hydrogenated composite. During hot compression, MHT effectively promoted the as-cast composite microstructure refinement, accelerated the dynamic recrystallization (DRX) generation, and reduced the stress concentration at the interface between the reinforcement and matrix; in turn, the hydrogenated composites presented low peak stress during hot compression.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3