Abstract
High-precision automatic identification and mapping of forest tree species composition is an important content of forest resource survey and monitoring. The airborne hyperspectral image contains rich spectral and spatial information, which provides the possibility of high-precision classification and mapping of forest tree species. Few-shot learning, as an application of deep learning, has become an effective method of image classification. Prototypical networks (P-Net) is a simple and practical deep learning network, which has significant advantages in solving few-shot classification problems. Considering the high band correlation and large data volume associated with airborne hyperspectral images, how to fully extract effective features, filter or reduce redundant features is the key to improving the classification accuracy of P-Net, in order to extract effective features in hyperspectral images and obtain a high-precision forest tree species classification model with limited samples. In this research, we embedded the convolutional block attention module (CBAM) between the convolution blocks of P-Net, the CBAM-P-Net was constructed, and a method to improve the feature extraction efficiency of the P-Net was proposed, although this method makes the network more complex and increases the computational cost to a certain extent. The results show that the combination strategy using Channel First for CBAM greatly improves the feature extraction efficiency of the model. In different sample windows, CBAM-P-Net has an average increase of 1.17% and 0.0129 in testing overall accuracy (OA) and kappa coefficient (Kappa). The optimal classification window is 17 × 17, the OA reaches 97.28%, and Kappa reaches 0.97, which is an increase of 1.95% and 0.0214 along with just 49 s of training time expended, respectively, compared with P-Net. Therefore, using a suitable sample window and applying the proposed CBAM-P-Net to classify airborne hyperspectral images can achieve high-precision classification and mapping of forest tree species.
Funder
National Key Research and Development Program of China
Subject
General Earth and Planetary Sciences
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献