A Novel Simplified Convolutional Neural Network Classification Algorithm of Motor Imagery EEG Signals Based on Deep Learning

Author:

Li Feng,He Fan,Wang Fei,Zhang DengyongORCID,Xia Yi,Li Xiaoyu

Abstract

Left and right hand motor imagery electroencephalogram (MI-EEG) signals are widely used in brain-computer interface (BCI) systems to identify a participant intent in controlling external devices. However, due to a series of reasons, including low signal-to-noise ratios, there are great challenges for efficient motor imagery classification. The recognition of left and right hand MI-EEG signals is vital for the application of BCI systems. Recently, the method of deep learning has been successfully applied in pattern recognition and other fields. However, there are few effective deep learning algorithms applied to BCI systems, particularly for MI based BCI. In this paper, we propose an algorithm that combines continuous wavelet transform (CWT) and a simplified convolutional neural network (SCNN) to improve the recognition rate of MI-EEG signals. Using the CWT, the MI-EEG signals are mapped to time-frequency image signals. Then the image signals are input into the SCNN to extract the features and classify them. Tested by the BCI Competition IV Dataset 2b, the experimental results show that the average classification accuracy of the nine subjects is 83.2%, and the mean kappa value is 0.651, which is 11.9% higher than that of the champion in the BCI Competition IV. Compared with other algorithms, the proposed CWT-SCNN algorithm has a better classification performance and a shorter training time. Therefore, this algorithm could enhance the classification performance of MI based BCI and be applied in real-time BCI systems for use by disabled people.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3