Extensive Evaluation of a Continental-Scale High-Resolution Hydrological Model Using Remote Sensing and Ground-Based Observations

Author:

Zhu Bowen,Xie XianhongORCID,Lu Chuiyu,Lei Tianjie,Wang Yibing,Jia KunORCID,Yao YunjunORCID

Abstract

Extreme hydrologic events are getting more frequent under a changing climate, and a reliable hydrological modeling framework is important to understand their mechanism. However, existing hydrological modeling frameworks are mostly constrained to a relatively coarse resolution, unrealistic input information, and insufficient evaluations, especially for the large domain, and they are, therefore, unable to address and reconstruct many of the water-related issues (e.g., flooding and drought). In this study, a 0.0625-degree (~6 km) resolution variable infiltration capacity (VIC) model developed for China from 1970 to 2016 was extensively evaluated against remote sensing and ground-based observations. A unique feature in this modeling framework is the incorporation of new remotely sensed vegetation and soil parameter dataset. To our knowledge, this constitutes the first application of VIC with such a long-term and fine resolution over a large domain, and more importantly, with a holistic system-evaluation leveraging the best available earth data. The evaluations using in-situ observations of streamflow, evapotranspiration (ET), and soil moisture (SM) indicate a great improvement. The simulations are also consistent with satellite remote sensing products of ET and SM, because the mean differences between the VIC ET and the remote sensing ET range from −2 to 2 mm/day, and the differences for SM of the top thin layer range from −2 to 3 mm. Therefore, this continental-scale hydrological modeling framework is reliable and accurate, which can be used for various applications including extreme hydrological event detections.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3