Hybrid Centralized Training and Decentralized Execution Reinforcement Learning in Multi-Agent Path-Finding Simulations

Author:

Chen Hua-Ching1ORCID,Li Shih-An2,Chang Tsung-Han2,Feng Hsuan-Ming3ORCID,Chen Yun-Chien2

Affiliation:

1. School of Information Engineering, Xiamen Ocean Vocational College, Xiamen 361100, China

2. Department of Electrical and Computer Engineering, Tamkang University, New Taipei City 10650, Taiwan

3. Department of Computer Science and Information Engineering, National Quemoy University, Kinmen County 892, Taiwan

Abstract

In this paper, we propose a hybrid centralized training and decentralized execution neural network architecture with deep reinforcement learning (DRL) to complete the multi-agent path-finding simulation. In the training of physical robots, collisions and other unintended accidents are very likely to occur in multi-agent cases, so it is required to train the networks within a deep deterministic policy gradient for the virtual environment of the simulator. The simple particle multi-agent simulator designed by OpenAI (Sacramento, CA, USA) for training platforms can easily obtain the state information of the environment. The overall system of the training cycle is designed with a self-designed reward function and is completed through a progressive learning approach from a simple to a complex environment. Finally, we carried out and presented the experiments of multi-agent path-finding simulations. The proposed methodology is better than the multi-agent model-based policy optimization (MAMBPO) and model-free multi-agent soft actor–critic models.

Funder

Ministry of Science and Technology (MOST) of the Republic of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3