Abstract
This paper presents a deep reinforcement learning-based path planning algorithm for the multi-arm robot manipulator when there are both fixed and moving obstacles in the workspace. Considering the problem properties such as high dimensionality and continuous action, the proposed algorithm employs the SAC (soft actor-critic). Moreover, in order to predict explicitly the future position of the moving obstacle, LSTM (long short-term memory) is used. The SAC-based path planning algorithm is developed using the LSTM. In order to show the performance of the proposed algorithm, simulation results using GAZEBO and experimental results using real manipulators are presented. The simulation and experiment results show that the success ratio of path generation for arbitrary starting and goal points converges to 100%. It is also confirmed that the LSTM successfully predicts the future position of the obstacle.
Funder
Ministry of Trade, Industry and Energy
National Research Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献