In Vitro Skin Co-Delivery and Antibacterial Properties of Chitosan-Based Microparticles Containing Ascorbic Acid and Nicotinamide

Author:

Di Filippo Leonardo DelelloORCID,Duarte Jonatas Lobato,Roque-Borda Cesar AugustoORCID,Pavan Fernando Rogério,Meneguin Andreia Bagliotti,Chorilli MarlusORCID,Melero AnaORCID,Guillot Antonio JoséORCID,Spagnol Caroline MagnaniORCID,Correa Marcos Antônio

Abstract

Vitamins are widely found in nature, for example, in plants and fruits. Ascorbic acid and nicotinamide are examples of these compounds that have potent antioxidant properties, besides stimulating collagen production and depigmenting properties that protect the skin from premature aging. To overcome the skin barrier and reduce the instability of antioxidant compounds, alternative systems have been developed to facilitate the delivery of antioxidants, making them efficiently available to the tissue for an extended time without causing damage or toxicity. The objective of this study was to obtain chitosan biodegradable microparticles containing ascorbic acid and nicotinamide for topical delivery. The microparticles were obtained by spray drying and characterized chemically by means of scanning electron microscopy, infrared spectroscopy, X-ray diffraction, and differential exploratory calorimetry. The drugs were successfully encapsulated and the microparticles showed positive zeta potential. In vitro release assays showed a sustained release profile. The evaluation of ex vivo skin permeation and retention demonstrated low permeation and adequate retention of the compounds in the epidermis/dermis, suggesting the efficient delivery from the obtained microparticles. Antibacterial assays have shown that microparticles can inhibit the growth of microorganisms in a time- and dose-dependent manner, corroborating their use in cosmetic products for application on the skin.

Funder

São Paulo Research Foundation

University of Valencia

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3