Abstract
Healthcare systems have been under immense pressure since the beginning of the COVID-19 pandemic; hence, studies on using machine learning (ML) methods for classifying ICU admissions and resource allocation are urgently needed. We investigated whether ML can propose a useful classification model for predicting the ICU admissions of COVID-19 patients. In this retrospective study, the clinical characteristics and laboratory findings of 100 patients with laboratory-confirmed COVID-19 tests were retrieved between May 2020 and January 2021. Based on patients’ demographic and clinical data, we analyzed the capability of the proposed weighted radial kernel support vector machine (SVM), coupled with (RFE). The proposed method is compared with other reference methods such as linear discriminant analysis (LDA) and kernel-based SVM variants including the linear, polynomial, and radial kernels coupled with REF for predicting ICU admissions of COVID-19 patients. An initial performance assessment indicated that the SVM with weighted radial kernels coupled with REF outperformed the other classification methods in discriminating between ICU and non-ICU admissions in COVID-19 patients. Furthermore, applying the Recursive Feature Elimination (RFE) with weighted radial kernel SVM identified a significant set of variables that can predict and statistically distinguish ICU from non-ICU COVID-19 patients. The patients’ weight, PCR Ct Value, CCL19, INF-β, BLC, INR, PT, PTT, CKMB, HB, platelets, RBC, urea, creatinine and albumin results were found to be the significant predicting features. We believe that weighted radial kernel SVM can be used as an assisting ML approach to guide hospital decision makers in resource allocation and mobilization between intensive care and isolation units. We model the data retrospectively on a selected subset of patient-derived variables based on previous knowledge of ICU admission and this needs to be trained in order to forecast prospectively.
Funder
Princess Nourah bint Abdulrahman University
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献