Prediction and Classification of COVID-19 Admissions to Intensive Care Units (ICU) Using Weighted Radial Kernel SVM Coupled with Recursive Feature Elimination (RFE)

Author:

Alshanbari Huda M.ORCID,Mehmood TahirORCID,Sami WaqasORCID,Alturaiki WaelORCID,Hamza Mauawia A.,Alosaimi BandarORCID

Abstract

Healthcare systems have been under immense pressure since the beginning of the COVID-19 pandemic; hence, studies on using machine learning (ML) methods for classifying ICU admissions and resource allocation are urgently needed. We investigated whether ML can propose a useful classification model for predicting the ICU admissions of COVID-19 patients. In this retrospective study, the clinical characteristics and laboratory findings of 100 patients with laboratory-confirmed COVID-19 tests were retrieved between May 2020 and January 2021. Based on patients’ demographic and clinical data, we analyzed the capability of the proposed weighted radial kernel support vector machine (SVM), coupled with (RFE). The proposed method is compared with other reference methods such as linear discriminant analysis (LDA) and kernel-based SVM variants including the linear, polynomial, and radial kernels coupled with REF for predicting ICU admissions of COVID-19 patients. An initial performance assessment indicated that the SVM with weighted radial kernels coupled with REF outperformed the other classification methods in discriminating between ICU and non-ICU admissions in COVID-19 patients. Furthermore, applying the Recursive Feature Elimination (RFE) with weighted radial kernel SVM identified a significant set of variables that can predict and statistically distinguish ICU from non-ICU COVID-19 patients. The patients’ weight, PCR Ct Value, CCL19, INF-β, BLC, INR, PT, PTT, CKMB, HB, platelets, RBC, urea, creatinine and albumin results were found to be the significant predicting features. We believe that weighted radial kernel SVM can be used as an assisting ML approach to guide hospital decision makers in resource allocation and mobilization between intensive care and isolation units. We model the data retrospectively on a selected subset of patient-derived variables based on previous knowledge of ICU admission and this needs to be trained in order to forecast prospectively.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference25 articles.

1. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)

2. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle

3. 2020 Coronavirus Disease 2019 (COVID-19): Situation Report, 82;World Health Organization

4. Worldometers.info. Dover, Delaware, U.S.A. Worldometer https://www.worldometers.info/coronavirus/country/saudi-arabia/

5. Demographic science aids in understanding the spread and fatality rates of COVID-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3