Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach

Author:

Ahmed Omar Shabbir12,Ali Jaffar Syed Mohamed2,Aabid Abdul1ORCID,Hrairi Meftah2ORCID,Yatim Norfazrina Mohd2

Affiliation:

1. Department of Engineering Management, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia

2. Department of Mechanical and Aerospace Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia

Abstract

This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies.

Funder

Structures and Materials (S&M) Research Lab of Prince Sultan University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3