Quasi‐static axial crushing of multi‐tubular foam‐filled carbon fiber reinforced composite structures

Author:

Khan Tabrej1ORCID,Alshahrani Hassan2,Abd‐Elaziem Walaa3,Umarfarooq M. A.4ORCID,Sebaey Tamer A.13

Affiliation:

1. Department of Engineering Management, College of Engineering Prince Sultan University Riyadh Saudi Arabia

2. Department of Mechanical Engineering, College of Engineering Najran University Najran Saudi Arabia

3. Department of Mechanical Design and Production, Faculty of Engineering Zagazig University Zagazig Sharkia Egypt

4. Centre of Excellence in Material Science, School of Mechanical Engineering KLE Technological University Hubballi India

Abstract

AbstractIn automotive design, a key aspect in limiting injuries in the event of collision is the ability of vehicle's structures to absorb high quantities of energy. Recently, automobiles have been designed with materials such as carbon fiber‐reinforced polymers to replace the conventional metallic materials, to boost structural safety and fuel efficiency. In this study, various combinations of carbon fiber‐reinforced plastic and Kevlar‐reinforced polymer composite tubes were assembled to form multi‐tubular composites and their crushing properties were investigated under quasi‐static axial compression. A total of five different combinations were designed and tested. The results showed that the addition of intermediate tubing system in the hollow composite tubes significantly improved the load‐bearing and energy absorption capabilities of the composite tubes. In addition, these configurations were also filled with polyurethane (PU) foam. It was shown that, apart from specific energy absorption (SEA), all the other parameters, such as peak load, mean load, crushing force efficiency, and overall energy absorption ability, were enhanced with the addition of foam. The SEA parameter showed inconsistent behavior, and this was attributed to the weight addition caused by the addition of foam in the composite tubes.Highlights This study examined the crashworthiness properties of multi‐tubular structures. Placing of intermediate tubing showed great improvement in absorption capacity. The system with carbon‐based intermediate tubes performed the best. Filling PU foam within the structures also improved the load‐bearing properties. The SEA was seen to reduce with the addition of PU foam.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3