Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing

Author:

El-Hawary Seham S.,Mohammed RababORCID,Taher Marwa A.,AbouZid Sameh Fekry,Mansour Mostafa A.ORCID,Almahmoud Suliman A.,Huwaimel BaderORCID,Amin ElhamORCID

Abstract

Genus Tabebuia is famous for its traditional uses and valuable phytoconstituents. Our previous investigation of Tabebuia species noted the promising anticancer activity of T. guayacan Hemsl. leaves extract, however, the mechanism underlying the observed anticancer activity is still unexplored. The current research was designed to explore the phytochemical content as well as to address the phytoconstituent(s) responsible for the recorded anticancer activity. Accordingly, sixteen compounds were isolated, and their structures were elucidated using different spectroscopic techniques. The drug-likeness of the isolated compounds, as well as their binding affinity with four anticancer drug target receptors: CDK-2/6, topoisomerase-1, and VEGFR-2, were evaluated. Additionally, the most promising compounds were in vitro evaluated for inhibitory activities against CDK-2/6 and VEGFR-2 enzymes using kinase assays method. Corosolic acid (3) and luteolin-7-O-β-glucoside (16) were the most active inhibitors against CDK-2 (−13.44 kcal/mol) and topoisomerase 1 (−13.83 kcal/mol), respectively. Meanwhile, quercetin 3-O-β-xyloside (10) scored the highest binding free energies against both CDK-6 (−16.23 kcal/mol) as well as against VEGFR-2 protein targets (−10.39 kcal/mol). Molecular dynamic simulation indicated that quercetin 3-O-β-xyloside (10) exhibited the least fluctuations and deviations from the starting binding pose with RMSD (2.6 Å). Interestingly, in vitro testing results confirmed the potent activity of 10 (IC50 = 0.154 µg/mL) compared to IC50 = 0.159 µg/mL of the reference drug ribociclib. These findings suggest the three noted compounds (3, 10, and 16) for further in vivo anticancer studies.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3