Two MYB and Three bHLH Family Genes Participate in Anthocyanin Accumulation in the Flesh of Peach Fruit Treated with Glucose, Sucrose, Sorbitol, and Fructose In Vitro

Author:

Wang Jiao,Cao Ke,Wang Lirong,Dong Wenxuan,Zhang XiaoORCID,Liu Weisheng

Abstract

Anthocyanins are important pigments in peach fruit and are beneficial to human health. Sugars are both energy-storing and signaling molecules and their roles in inducing anthocyanin biosynthesis have received a great deal of research attention. However, the mechanism by which sugars induce anthocyanin biosynthesis in peach fruit is unknown. In order to understand this induction mechanism, comprehensive transcriptome and metabolome were performed in fruit flesh treated with four different sugars for 12 and 24 h, respectively. Here, we found that cyanidin-3-O-(6-O-p-coumaroyl) glucosides accumulated in fruit flesh treated with glucose, sucrose, sorbitol, and fructose in vitro. Two key structural genes of the anthocyanin biosynthesis pathway, namely, PpDFR and PpUFGT, were upregulated in the flesh of sugar-treated peach fruit. By contrast, the two main transcription factors (TFs) PpMYB10.1 and PpBL regulating anthocyanin biosynthetic genes in peach fruit were not upregulated accordingly. Interestingly, two MYB family genes (PpMYB6 and PpMYB44-like) and three bHLH family genes (PpbHLH35, PpbHLH51, and PpbHLH36-like) were upregulated. A dual luciferase assay revealed that PpMYB6 strongly activated the PpUFGT promoter when it was co-infiltrated with PpbHLH35, PpbHLH51, and PpbHLH36-like. When PpMYB44-like was co-infiltrated with PpbHLH35, it also potently activated the PpUFGT promoter. The results of this study help clarify the molecular mechanisms by which glucose, sucrose, sorbitol, and fructose regulate anthocyanin accumulation in peach fruit.

Funder

National Key Research and Development Program

the Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3