Metal- and Organ-Specific Response to Heavy Metal-Induced Stress Mediated by Antioxidant Enzymes’ Activities, Polyamines, and Plant Hormones Levels in Populus deltoides

Author:

Kebert MarkoORCID,Kostić SašaORCID,Vuksanović VanjaORCID,Gavranović Markić AnđelinaORCID,Kiprovski BiljanaORCID,Zorić Martina,Orlović Saša

Abstract

Besides anthropogenic factors, climate change causes altered precipitation patterns that indirectly affect the increase of heavy metals in soils due to hydrological effects and enhanced leaching (i.e., Cd and Ni), especially in the vicinity of mines and smelters. Phytoextraction is a well-known, powerful “green” technique for environmental clean-up that uses plants to extract, sequester, and/or detoxify heavy metals, and it makes significant contributions to the removal of persistent inorganic pollutants from soils. Poplar species, due to their growth features, high transpiration rate, large biomass, and feasible reproduction represent great candidates for phytoextraction technology. However, the consequences of concomitant oxidative stress upon plant metabolism and the mechanism of the poplar’s tolerance to heavy metal-induced stress are still not completely understood. In this study, cuttings of poplar species (Populus deltoides W. Bartram ex Marshall) were separately exposed to two heavy metals (Cd2+ and Ni2+) that were triple the maximum allowed amount (MAA) (according to national legislation). The aim of the study was to estimate the effects of heavy metals on: (I) the accumulation of free and conjugated polyamines, (II) plant hormones (including abscisic acid-ABA and indole-3-acetic acid-IAA), and (III) the activities of different antioxidant enzymes at root and leaf levels. By using the selected ion monitoring (SIM) mode of gas chromatography with mass spectrometry (GC/MS) coupled with the isotopically labeled technique, amounts of ABA and IAA were quantified, while polyamine amounts were determined by using high-performance liquid chromatography (HPLC) with fluorometric detection after derivatization. The results showed that P. deltoides responded to elevated concentrations of heavy metals in soils by exhibiting metal- and organ-specific tolerance. Knowledge about tolerance mechanisms is of great importance for the development of phytoremediation technology and afforestation programs for polluted soils.

Funder

Provincial Secretariat for Higher Education and Scientific Research

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3