Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria

Author:

Zafar-ul-Hye Muhammad,Naeem Muhammad,Danish Subhan,Fahad ShahORCID,Datta RahulORCID,Abbas MazharORCID,Rahi Ashfaq AhmadORCID,Brtnicky Martin,Holátko Jiří,Tarar Zahid HassanORCID,Nasir Muhammad

Abstract

Cadmium is acute toxicity inducing heavy metal that significantly decreases the yield of crops. Due to high water solubility, it reaches the plant tissue and disturbs the uptake of macronutrients. Low uptake of nutrients in the presence of cadmium is a well-documented fact due to its antagonistic relationship with those nutrients, i.e., potassium. Furthermore, cadmium stressed plant produced a higher amount of endogenous stress ethylene, which induced negative effects on yield. However, inoculation of 1-amino cyclopropane-1-carboxylate deaminase (ACCD), producing plant growth promoting rhizobacteria (PGPR), can catabolize this stress ethylene and immobilized heavy metals to mitigate cadmium adverse effects. We conducted a study to examine the influence of ACCD PGPR on nutrients uptake and yield of bitter gourd under cadmium toxicity. Cadmium tolerant PGPRs, i.e., Stenotrophomonas maltophilia and Agrobacterium fabrum were inoculated solely and in combination with recommended nitrogen, phosphorus, and potassium fertilizers (RNPKF) applied under different concentration of soil cadmium (2 and 5 mg kg−1 soil). Results showed that A. fabrum with RNPKF showed significant positive response towards an increase in the number of bitter gourds per plant (34% and 68%), fruit length (19% and 29%), bitter gourd yield (26.5% and 21.1%), N (48% and 56%), and K (72% and 55%) concentration from the control at different concentrations of soil cadmium (2 and 5 mg kg−1 soil), respectively. In conclusion, we suggest that A. fabrum with RNPKF can more efficaciously enhance N, K, and yield of bitter gourd under cadmium toxicity.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3