Impact of OsBadh2 Mutations on Salt Stress Response in Rice

Author:

Prodhan Zakaria H.ORCID,Islam Shah A.,Alam Mohammad S.,Li Shan,Jiang MengORCID,Tan Yuanyuan,Shu QingyaoORCID

Abstract

Mutations in the Betaine aldehyde dehydrogenase 2 (OsBadh2) gene resulted in aroma, which is a highly preferred grain quality attribute in rice. However, research on naturally occurring aromatic rice has revealed ambiguity and controversy regarding aroma emission, stress tolerance, and response to salinity. In this study, mutant lines of two non-aromatic varieties, Huaidao#5 (WT_HD) and Jiahua#1 (WT_JH), were generated by targeted mutagenesis of OsBadh2 using CRISPR/Cas9 technology. The mutant lines of both varieties became aromatic; however, WT_HD mutants exhibited an improved tolerance, while those of WT_JH showed a reduced tolerance to salt stress. To gain insight into the molecular mechanism leading to the opposite effects, comparative analyses of the physiological activities and expressions of aroma- and salinity-related genes were investigated. The WT_HD mutants had a lower mean increment rate of malondialdehyde, superoxide dismutase, glutamate, and proline content, with a higher mean increment rate of γ-aminobutyric acid, hydrogen peroxide, and catalase than the WT_JH mutants. Fluctuations were also detected in the salinity-related gene expression. Thus, the response mechanism of OsBadh2 mutants is complicated where the genetic makeup of the rice variety and interactions of several genes are involved, which requires more in-depth research to explore the possibility of producing highly tolerant aromatic rice genotypes.

Funder

International Atomic Energy Agency

Department of Science and Technology of Zhejiang Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference86 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3