Phosphorylation of CAD1, PLDdelta, NDT1, RPM1 Proteins Induce Resistance in Tomatoes Infected by Ralstonia solanacearum

Author:

Nounurai Prachumporn,Afifah Anis,Kittisenachai Suthathip,Roytrakul SittirukORCID

Abstract

Ralstonia solanacaerum is one of the most devastating bacteria causing bacterial wilt disease in more than 200 species of plants, especially those belonging to the family Solanaceae. To cope with this pathogen, plants have evolved different resistance mechanisms depending on signal transduction after perception. Phosphorylation is the central regulatory component of the signal transduction pathway. We investigated a comparative phosphoproteomics analysis of the stems of resistant and susceptible tomatoes at 15 min and 30 min after inoculation with Ralstonia solanacearum to determine the phosphorylated proteins involved in induced resistance. Phosphoprotein profiling analyses led to the identification of 969 phosphoproteins classified into 10 functional categories. Among these, six phosphoproteins were uniquely identified in resistant plants including cinnamyl alcohol dehydrogenase 1 (CAD1), mitogen-activated protein kinase kinase kinase 18 (MAPKKK18), phospholipase D delta (PLDDELTA), nicotinamide adenine dinucleotide transporter 1 (NDT1), B3 domain-containing transcription factor VRN1, and disease resistance protein RPM1 (RPM1). These proteins are typically involved in defense mechanisms across different plant species. qRT-PCR analyses were performed to evaluate the level of expression of these genes in resistant and susceptible tomatoes. This study provides useful data, leading to an understanding of the early defense mechanisms of tomatoes against R. solanacearum.

Funder

National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3