On-spot Citrus Canker Disease Detection using YOLOv7
Author:
Affiliation:
1. Amrita School of Computing, Mysuru Campus Amrita Vishwa, Department of Computer Science, Vidyapeetham, India
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10140172/10140203/10141105.pdf?arnumber=10141105
Reference23 articles.
1. Machine vision approach for classification of citrus leaves using fused features
2. Citrus disease detection and classification using end-to-end anchor-based deep learning model
3. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit
4. Convolution Neural Networks Backbone model for Citrus Leaf Disease Detection
5. Citrus Greening Infection Detection (CiGID) by Computer Vision and Deep Learning
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Identification and Detection of Leaf Miner, Pests Infestation in Cucurbitaceae Family in Real Time Infield Scenarios using YOLOv5s Object Detection Model;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28
2. Early Cotton Plant Disease Detection using Drone Monitoring and Deep Learning;2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE);2024-02-16
3. Yolov7-ODCA: Object Detection of Pomelo Epidermis Defects Based on Improved YOLOv7;2023 3rd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI);2023-12-15
4. A Deep Learning Approach – Monkey Detection using YOLOv7;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3