Genetic Potential and Inheritance Patterns of Physiological, Agronomic and Quality Traits in Bread Wheat under Normal and Water Deficit Conditions

Author:

Kamara MohamedORCID,Rehan MedhatORCID,Mohamed Amany,El Mantawy Rania,Kheir AhmedORCID,Abd El-Moneim DiaaORCID,Safhi FatmahORCID,ALshamrani Salha,Hafez EmadORCID,Behiry SaidORCID,Ali MohamedORCID,Mansour ElsayedORCID

Abstract

Water scarcity is a major environmental stress that adversatively impacts wheat growth, production, and quality. Furthermore, drought is predicted to be more frequent and severe as a result of climate change, particularly in arid regions. Hence, breeding for drought-tolerant and high-yielding wheat genotypes has become more decisive to sustain its production and ensure global food security with continuing population growth. The present study aimed at evaluating different parental bread wheat genotypes (exotic and local) and their hybrids under normal and drought stress conditions. Gene action controlling physiological, agronomic, and quality traits through half-diallel analysis was applied. The results showed that water-deficit stress substantially decreased chlorophyll content, photosynthetic efficiency (FV/Fm), relative water content, grain yield, and yield attributes. On the other hand, proline content, antioxidant enzyme activities (CAT, POD, and SOD), grain protein content, wet gluten content, and dry gluten content were significantly increased compared to well-watered conditions. The 36 evaluated genotypes were classified based on drought tolerance indices into 5 groups varying from highly drought-tolerant (group A) to highly drought-sensitive genotypes (group E). The parental genotypes P3 and P8 were identified as good combiners to increase chlorophyll b, total chlorophyll content, relative water content, grain yield, and yield components under water deficit conditions. Additionally, the cross combinations P2 × P4, P3 × P5, P3 × P8, and P6 × P7 were the most promising combinations to increase yield traits and multiple physiological parameters under water deficit conditions. Furthermore, P1, P2, and P5 were recognized as promising parents to improve grain protein content and wet and dry gluten contents under drought stress. In addition, the crosses P1 × P4, P2 × P3, P2 × P5, P2 × P6, P4 × P7, P5 × P7, P5 × P8, P6 × P8, and P7 × P8 were the best combinations to improve grain protein content under water-stressed and non-stressed conditions. Certain physiological traits displayed highly positive associations with grain yield and its contributing traits under drought stress such as chlorophyll a, chlorophyll b, total chlorophyll content, photosynthetic efficiency (Fv/Fm), proline content, and relative water content, which suggest their importance for indirect selection under water deficit conditions. Otherwise, grain protein content was negatively correlated with grain yield, indicating that selection for higher grain yield could reduce grain protein content under drought stress conditions.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3