Spatial Distribution and Climate Warming Impact on Abies kawakamii Forest on a Subtropical Island

Author:

Chiu Ching-AnORCID,Tzeng Hsy-YuORCID,Lin Cheng-TaoORCID,Chang Kun-ChengORCID,Liao Min-ChunORCID

Abstract

Species distribution modeling (SDM) is currently the primary tool for predicting suitable habitats for species. In this study, we used Abies kawakamii, a species endemic to Taiwan. Being the only Abies species distributed in high mountains, it acts as an ecological indicator on the subtropical island. We analyzed a vegetation map derived from remote sensing and ground surveys using SDM. The actual distribution of A. kawakamii in Taiwan has a total area of 16,857 ha distributed at an altitude of 2700–3600 m, and it often forms a monodominant forest at 3100–3600 m with the higher altitude edge as a forest line. Exploring the potential distribution of A. kawakamii through MaxEnt showed that the suitable habitat was 73,151 ha under the current climate. Under the scenarios of temperature increases of 0.5, 1.0, 1.5, and 2.0 °C, suitable habitat for A. kawakamii will gradually decrease to 70.2%, 47.1%, 30.2%, and 10.0% of this area, respectively, indicating that A. kawakamii will greatly decline under these climate warming scenarios. Fire burning disturbance may be the most significant damage to A. kawakamii at present. Although A. kawakamii has been protected by conservation areas and its natural regeneration is in good condition, it rarely has the opportunity to migrate upwards during climate warming. We suggest that in the future, research on the natural regeneration and artificial restoration of A. kawakamii should be emphasized, especially in the forest line ecotone.

Funder

Shei-Pa National Park Headquarters

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference88 articles.

1. Predicting species distribution: offering more than simple habitat models

2. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time

3. Mapping Species Distributions: Spatial Inference and Prediction;Franklin,2009

4. Ecological Niches and Geographic Distributions;Peterson,2011

5. Species Distribution Modeling;Elith,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3