Modeling of the Spatial Distribution of Forest Carbon Storage in a Tropical/Subtropical Island with Multiple Ecozones

Author:

Chang Ting-Wei1ORCID,Chen Guan-Fu2,Chang Ken-Hui2

Affiliation:

1. Department of Environmental and Life Sciences, University of Shizuoka, 52-1 Yada, Suruga Dist., Shizuoka 422-8526, Japan

2. Department of Safety, Health and Environmental Engineering, National Yunlin University of Science & Technology, 123 University Road, Section 3, Douliu, Yunlin 64002, Taiwan

Abstract

Visual data on the geographic distribution of carbon storage help policy makers to formulate countermeasures for global warming. However, Taiwan, as an island showing diversity in climate and topography, had lacked valid visual data on the distribution of forest carbon storage between the last two forest surveys (1993–2015). This study established a model to estimate and illustrate the distribution of forest carbon storage. This model uses land use, stand morphology, and carbon conversion coefficient databases accordingly for 51 types of major forests in Taiwan. An estimation in 2006 was conducted and shows an overall carbon storage of 165.65 Mt C, with forest carbon storage per unit area of 71.56 t C ha−1, where natural forests and plantations respectively contributed 114.15 Mt C (68.9%) and 51.50 Mt C (31.1%). By assuming no change in land use type, the carbon sequestration from 2006 to 2007 by the 51 forest types was estimated to be 5.21 Mt C yr−1 using historical tree growth and mortality rates. The result reflects the reality of the land use status and the events of coverage shifting with time by combining the two forest surveys in Taiwan.

Funder

National Science and Technology Council, Taiwan

National Yunlin University of Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

1. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Global Carbon Budget 2021;Friedlingstein;Earth Syst. Sci. Data,2022

3. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., and Pidcock, R. (2018). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

4. Climate Drives Sea Change;Greene;Science,2007

5. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States;Weiskopf;Sci. Total Environ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3