Abstract
Due to global industrialization in recent decades, large areas have been threatened by heavy metal contamination. Research about the impact of excessive Zn on N and P transformation in farmland has received little attention, and its mechanism is still not completely known. In this study, we planted rice in soils with toxic levels of Zn, and analyzed the plant growth and nutrient uptake, the N and P transformation, enzyme activities and microbial communities in rhizosphere soil to reveal the underlying mechanism. Results showed high levels of Zn severely repressed the plant growth and uptake of N and P, but improved the N availability and promoted the conversion of organic P into inorganic forms in rice rhizosphere soil. Moreover, high levels of Zn significantly elevated the activities of hydrolases including urease, protease, acid phosphatase, sucrase and cellulose, and dehydrogenase, as well as the abundances of Flavisolibacter, Sphingomonas, Gemmatirosa, and subgroup_6, which contributed to the mineralization of organic matter in soil. Additionally, toxic level of Zn repressed the nitrifying process by decreasing the abundance of nitrosifying bacteria Ellin6067 and promoted denitrification by increasing the abundance of Noviherbaspirillum, which resulted in decreased NO3− concentration in rice rhizosphere soil under VHZn condition.
Funder
National Key R&D Program of China
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics