Evaluation of urea loaded nanoclay biopolymer composites with Zn and P solubilizing microbes for nitrogen uptake and use efficiency in maize (Zea mays)-wheat (Triticum aestivum) cropping system

Author:

KUMAR ASHEESH,MANJAIAH K M,SHARMA V K,CHOBHE KAPIL A,SUMAN ARCHNA,BHATIA ARTI,SAINI RAVI,MEENA SIYARAM,KUMAR A NAVEEN,ROY DIBAKAR

Abstract

A field experiment was conducted during rainy (kharif) 2022 (July 2022–October 2022) and winter (rabi) 2022–23 (November 2022–March 2023) seasons at ICAR-Indian Agricultural Research Institute, New Delhi to evaluate a series of Zn and P solubilizing microbial culture enriched nanoclay biopolymer composite (NCBPC) loaded with nitrogenous fertilizer (urea) and the efficiency of the products for maize (Zea mays L.) and wheat (Triticum aestivum L.). Experiment consisted of 10 treatments, viz. T1, Control; T2, 100% N though urea; T3; T5; T7; and T9, 75% N as urea loaded NCBPC-A (prepared using acrylic acid + acrylamide + mango kernel flour) alone or along with P or Zn or P + Zn solubilizers; T4; T6; T8 and T10, 75% N as urea loaded NCBPC-B (prepared using acrylic acid + acrylamide + maize flour) alone or along with P or Zn or P + Zn solubilizers in a randomized block design (RBD) and replicated thrice. In both maize and wheat crop, highest grain (5.09 and 5.32 t/ha) and straw yield (6.56 and 7.45 t/ha), apparent N recovery (51.26 and 47.26%) and agronomic efficiency (12 and 13.3 kg grain yield obtained/kg N application) were obtained in treatment T10 followed by T9. In addition, total N uptake significantly enhanced by 20.1–28.4% in maize and 22.1–30.8% in wheat (T9 and T10); apparent nitrogen recovery (ANR) improved by 12.9–18.2 and 15.2–21.1% and agronomic efficiency (AE) triggered by 19.5–21.2 and 15.4–20.8% in maize and wheat crops respectively, under T9 and T10 treatments over standard urea fertilization (T2). Thus, the study concludes that, 25% N requirement could be cut down through application of 75% N (urea) loaded NCBPCs in conjunction with Zn or P or Zn + P solubilizing microbial culture as compared to sole urea application under maize-wheat cropping system.

Publisher

Indian Council of Agricultural Research, Directorate of Knowledge Management in Agriculture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3