Thermo-Sensitive Genic Male Sterile Lines of Neo-Tetraploid Rice Developed through Gene Editing Technology Revealed High Levels of Hybrid Vigor

Author:

Chen Yang,Shahid Muhammad QasimORCID,Wu JinwenORCID,Deng Ruilian,Chen Zhixiong,Wang Lan,Liu Guoqiang,Zhou HaiORCID,Liu XiangdongORCID

Abstract

Neo-tetraploid rice, which developed from the progenies of autotetraploid hybrid by our research group, is a useful germplasm with high fertility and strong heterosis when they crossed with other autotetraploid rice lines. The CRISPR/Cas9-mediated TMS5 gene editing system has been widely used in diploid rice, but there are few reports in tetraploid rice. Here, we used CRISPR/Cas9 technology to edit the TMS5 gene, which is a temperature sensitive gene controlling the fertility in diploid rice, in neo-tetraploid rice to develop male sterile lines. Two mutant lines, H2s and H3s, were developed from the gene editing and displayed characteristics of thermo-sensitive genic male sterility. The daily mean temperatures of 23 °C to 26 °C were found to be critical for sterility (restrictive temperature) in H2s and H3s under both controlled (growth chambers) and natural growing conditions (field). Cytological observation showed the anther dysplasia appeared later in H2s and H3s than that of the TMS5 mutant of diploid rice (E285s) under the same conditions. Then these mutant lines, H2s and H3s, were crossed with tetraploid rice to generate F1 hybrids, which exhibited obvious advantages for effective number of panicles, total grains and seed setting. The high levels of hybrids heterosis were maintained for several generations that can save seed cost. Our research provides an effective way of developing thermo-sensitive genic male sterility (TGMS) lines of tetraploid rice using gene editing, which will accelerate the utilization of polyploid heterosis.

Funder

Laboratory of Lingnan Modern Agriculture Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3