Multiple Plant Regeneration from Embryogenic Calli of Paulownia tomentosa (Thunb.) Steud

Author:

Amirova Aigul,Dossymbetova SymbatORCID,Rysbayeva Yeldana,Usenbekov Bakdaulet,Tolegen Arman,Ydyrys AlibekORCID

Abstract

The aim of this paper was to study the effect of plant growth regulators on callus induction and in vitro morphogenesis using various explants of Paulownia tomentosa to develop an efficient plant regeneration protocol. Different plant organ sections (leaves, apical shoot tips, petals, nodes, and internodes) were cultured as explants to identify the best in vitro explants responsive to callus induction and plant regeneration. Explants were cultivated on MS media supplemented with different concentrations of plant growth regulators (TDZ (Thidiazuron), BAP (6-Benzylaminopurine), kinetin, and NAA (1-Naphthaleneacetic acid). It was discovered that the addition of TDZ and NAA stimulated the induction of somatic embryogenesis. It was discovered that the MS medium with the combination of plant growth regulators BAP (35.5 µM) and NAA (5.4 µM) with the addition of 30.0 g/L maltose, 500.0 mg/L casein hydrolysate, and 250.0 mg/L L-proline was optimal for callus induction and multiple plant regeneration. The study of the regenerative capacity of various explants of Paulownia tomentosa in vitro showed that plant regeneration depends on the type of explant, and occurs in both ways, indirectly, through the formation of callus tissues and directly on the explant, without callus formation. As a result of this study, the efficient reproducible protocol of embryogenic callus formation and multiple shoot induction in vitro of Paulownia tomentosa was developed. This system provides a clear increase in the frequency of plant regeneration from 36.3 ± 3.4% to 38.6 ± 2.3% per embryogenic callus from leaves and apical shoot tips, respectively.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3