The Effects of Exogenous Salicylic Acid on Endogenous Phytohormone Status in Hordeum vulgare L. under Salt Stress

Author:

Torun Hülya,Novák OndřejORCID,Mikulík Jaromír,Strnad Miroslav,Ayaz Faik Ahmet

Abstract

Acclimation to salt stress in plants is regulated by complex signaling pathways involving endogenous phytohormones. The signaling role of salicylic acid (SA) in regulating crosstalk between endogenous plant growth regulators’ levels was investigated in barley (Hordeum vulgare L. ‘Ince’; 2n = 14) leaves and roots under salt stress. Salinity (150 and 300 mM NaCl) markedly reduced leaf relative water content (RWC), growth parameters, and leaf water potential (LWP), but increased proline levels in both vegetative organs. Exogenous SA treatment did not significantly affect salt-induced negative effects on RWC, LWP, and growth parameters but increased the leaf proline content of plants under 150 mM salt stress by 23.1%, suggesting that SA enhances the accumulation of proline, which acts as a compatible solute that helps preserve the leaf’s water status under salt stress. Changes in endogenous phytohormone levels were also investigated to identify agents that may be involved in responses to increased salinity and exogenous SA. Salt stress strongly affected endogenous cytokinin (CK) levels in both vegetative organs, increasing the concentrations of CK free bases, ribosides, and nucleotides. Indole-3-acetic acid (IAA, auxin) levels were largely unaffected by salinity alone, especially in barley leaves, but SA strongly increased IAA levels in leaves at high salt concentration and suppressed salinity-induced reductions in IAA levels in roots. Salt stress also significantly increased abscisic acid (ABA) and ethylene levels; the magnitude of this increase was reduced by treatment with exogenous SA. Both salinity and SA treatment reduced jasmonic acid (JA) levels at 300 mM NaCl but had little effect at 150 mM NaCl, especially in leaves. These results indicate that under high salinity, SA has antagonistic effects on levels of ABA, JA, ethylene, and most CKs, as well as basic morphological and physiological parameters, but has a synergistic effect on IAA, which was well exhibited by principal component analysis (PCA).

Funder

the Ministry of Education, Youth and Sports of the Czech Republic from European Regional De-velopment Fund

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3