Impact of Drying Processes on Phenolics and In Vitro Health-Related Activities of Indigenous Plants in Thailand

Author:

Sirichai PandareeORCID,Kittibunchakul Suwapat,Thangsiri Sirinapa,On-Nom NattiraORCID,Chupeerach ChaowaneeORCID,Temviriyanukul PiyaORCID,Inthachat WooraweeORCID,Nuchuchua Onanong,Aursalung Amornrat,Sahasakul YurapornORCID,Charoenkiatkul Somsri,Suttisansanee UthaiwanORCID

Abstract

Thailand has vast areas of tropical forests with many indigenous plants, but limited information is available on their phytochemical profile and in vitro inhibitions of enzymatic and nonenzymatic reactions. This study investigated phenolic profiles using liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS), antioxidant activities, and in vitro inhibitory activities of 10 indigenous plants on key enzymes related to obesity (lipase), diabetes (α-amylase and α-glucosidase), and Alzheimer’s disease (cholinesterases and β-secretase). The nonenzymatic anti-glycation reaction was also investigated. The 10 indigenous plants were Albizia lebbeck (L.) Benth, Alpinia malaccensis (Burm.) Roscoe, Careya arborea Roxb., Diplazium esculentum (Retz.) Swartz, Kaempferia roscoeana Wall., Millettia brandisiana Kurz., Momordica charantia, Phyllanthusemblica L., Zingiber cassumunar Roxb, and Zingiber citriodorum J. Mood & T. Theleide. Preparations were made by either freeze-drying or oven-drying processes. Results suggested that the drying processes had a minor impact on in vitro inhibitions of enzymatic and nonenzymatic reactions (<4-fold difference). P. emblica was the most potent antioxidant provider with high anti-glycation activity (>80% inhibition using the extract concentration of ≤6 mg/mL), while D. esculentum effectively inhibited β-secretase activity (>80% inhibition using the extract concentration of 10 mg/mL). C. arborea exhibited the highest inhibitory activities against lipase (47–51% inhibition using the extract concentration of 1 mg/mL) and cholinesterases (>60% inhibition using the extract concentration of 2 mg/mL), while Mi. brandisiana dominantly provided α-amylase and α-glucosidase inhibitors (>80% inhibition using the extract concentration of ≤2 mg/mL). Information obtained from this research may support usage of the oven-drying method due to its lower cost and easier preparation step for these studied plant species and plant parts. Furthermore, the information on in vitro inhibitions of enzymatic and nonenzymatic reactions could be used as fundamental knowledge for further investigations into other biological activities such as cell culture or in vivo experiments of these health-beneficial plants.

Funder

the National Research Council of Thailand

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3