Combining Hyperspectral Reflectance Indices and Multivariate Analysis to Estimate Different Units of Chlorophyll Content of Spring Wheat under Salinity Conditions

Author:

El-Hendawy SalahORCID,Dewir Yaser HassanORCID,Elsayed SalahORCID,Schmidhalter UrsORCID,Al-Gaadi Khalid,Tola ElKamil,Refay Yahya,Tahir Muhammad Usman,Hassan Wael M.ORCID

Abstract

Although plant chlorophyll (Chl) is one of the important elements in monitoring plant stress and reflects the photosynthetic capacity of plants, their measurement in the lab is generally time- and cost-inefficient and based on a small part of the leaf. This study examines the ability of canopy spectral reflectance data for the accurate estimation of the Chl content of two wheat genotypes grown under three salinity levels. The Chl content was quantified as content per area (Chl area, μg cm−2), concentration per plant (Chl plant, mg plant−1), and SPAD value (Chl SPAD). The performance of spectral reflectance indices (SRIs) with different algorithm forms, partial least square regression (PLSR), and stepwise multiple linear regression (SMLR) in estimating the three units of Chl content was compared. Results show that most indices within each SRI form performed better with Chl area and Chl plant and performed poorly with Chl SPAD. The PLSR models, based on the four forms of SRIs individually or combined, still performed poorly in estimating Chl SPAD, while they exhibited a strong relationship with Chl plant followed by Chl area in both the calibration (Cal.) and validation (Val.) datasets. The SMLR models extracted three to four indices from each SRI form as the most effective indices and explained 73–79%, 80–84%, and 39–43% of the total variability in Chl area, Chl plant, and Chl SPAD, respectively. The performance of the various predictive models of SMLR for predicting Chl content depended on salinity level, genotype, season, and the units of Chl content. In summary, this study indicates that the Chl content measured in the lab and expressed on content (μg cm−2) or concentration (mg plant−1) can be accurately estimated at canopy level using spectral reflectance data.

Funder

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3