High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images

Author:

Taha Mohamed Farag123ORCID,Mao Hanping1,Wang Yafei1,ElManawy Ahmed Islam4,Elmasry Gamal4ORCID,Wu Letian5,Memon Muhammad Sohail16ORCID,Niu Ziang2,Huang Ting2,Qiu Zhengjun2

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

2. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

3. Department of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Arish University, North Sinai 45516, Egypt

4. Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt

5. Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

6. Department of Farm Power and Machinery, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam 70060, Pakistan

Abstract

Chlorophyll content reflects plants’ photosynthetic capacity, growth stage, and nitrogen status and is, therefore, of significant importance in precision agriculture. This study aims to develop a spectral and color vegetation indices-based model to estimate the chlorophyll content in aquaponically grown lettuce. A completely open-source automated machine learning (AutoML) framework (EvalML) was employed to develop the prediction models. The performance of AutoML along with four other standard machine learning models (back-propagation neural network (BPNN), partial least squares regression (PLSR), random forest (RF), and support vector machine (SVM) was compared. The most sensitive spectral (SVIs) and color vegetation indices (CVIs) for chlorophyll content were extracted and evaluated as reliable estimators of chlorophyll content. Using an ASD FieldSpec 4 Hi-Res spectroradiometer and a portable red, green, and blue (RGB) camera, 3600 hyperspectral reflectance measurements and 800 RGB images were acquired from lettuce grown across a gradient of nutrient levels. Ground measurements of leaf chlorophyll were acquired using an SPAD-502 m calibrated via laboratory chemical analyses. The results revealed a strong relationship between chlorophyll content and SPAD-502 readings, with an R2 of 0.95 and a correlation coefficient (r) of 0.975. The developed AutoML models outperformed all traditional models, yielding the highest values of the coefficient of determination in prediction (Rp2) for all vegetation indices (VIs). The combination of SVIs and CVIs achieved the best prediction accuracy with the highest Rp2 values ranging from 0.89 to 0.98, respectively. This study demonstrated the feasibility of spectral and color vegetation indices as estimators of chlorophyll content. Furthermore, the developed AutoML models can be integrated into embedded devices to control nutrient cycles in aquaponics systems.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Major Science and Technology Project of Xinjiang Uygur autonomous region

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3