Characteristics of Sunburn Browning Fruit and Rootstock-Dependent Damage-Free Yield of Ambrosia™ Apple after Sustained Summer Heat Events

Author:

Xu HaoORCID,Watanabe Yoichiro,Ediger Danielle,Yang Xiaotang,Iritani Davis

Abstract

The 2021 summer heat waves experienced in the Pacific Northwest led to considerable fruit damage in many apple production zones. Sunburn browning (SB) was a particularly evident symptom. To understand the mechanism underlying the damage and to facilitate the early assessment of compromised fruit quality, we conducted a study on external characteristics and internal quality attributes of SB ‘Ambrosia’ apple (Malus domestica var. Ambrosia) and evaluated the fruit loss on five rootstocks. The cell integrity of the epidermal and hypodermal layers of fruit skins in the SB patch was compromised. Specifically, the number of chloroplasts and anthocyanin decreased in damaged cells, while autofluorescent stress-related compounds accumulated in dead cells. Consequently, the affected sun-exposed skin demonstrated a significant increase in differential absorbance between 670 nm and 720 nm, measured using a handheld apple DA meter, highlighting the potential of using this method as a non-destructive early indicator for sunburn damage. Sunburn browning eventually led to lower fruit weight, an increase in average dry matter content, soluble solids content, acidity, deteriorated weight retention, quicker loss of firmness, and accelerated ethylene emission during ripening. Significant inconsistency was found between the sun-exposed and shaded sides in SB apples regarding dry matter content, firmness, and tissue water potential, which implied preharvest water deficit in damaged tissues and the risk of quicker decline of postharvest quality. Geneva 935 (G.935), a large-dwarfing rootstock with more vigor and higher water transport capacity, led to a lower ratio of heat-damaged fruits and a higher yield of disorder-free fruits, suggesting rootstock selection as a long-term horticultural measure to mitigate summer heat stress.

Funder

Agriculture and Agri-Food Canada

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3