Hydrogel Improved Growth and Productive Performance of Mango Trees under Semi-Arid Condition

Author:

Alshallash Khalid S.ORCID,Sharaf MohamedORCID,Hmdy Ashraf E.ORCID,Khalifa Sobhy M.,Abdel-Aziz Hosny F.ORCID,Sharaf Ahmed,Ibrahim Mariam T. S.,Alharbi KhadigaORCID,Elkelish AmrORCID

Abstract

Nowadays, the production of new mango cultivars is increased in many countries worldwide. The soil application of hydrogel represents a novel approach in the fruit trees industry. This investigation aims to study the effect of adding hydrogel (as soil conditioner) on the growth and yield of Shelly cv. mango trees. The experimental groups were assigned to a control group and three other treated groups, including 250, 500, or 750 g hydrogel∙tree−1. The results demonstrated that all applications of hydrogel composite had higher vegetative growth parameters, yield, and fruit quality characteristics of Shelly cv. mango trees compared to the control. The treatment of 750 g hydrogel∙tree−1 had higher values of vegetative growth parameters such as the leaf area, shoot length and tree canopy volume, compared to the control group and the other treatments. Similarly, higher values for yield and fruit quality were observed in the treatment of 750 g hydrogel∙tree−1. In conclusion, different amounts of hydrogel agent can improve the production and fruit quality of Shelly cv. mango trees in arid and semi-arid conditions in a dose-dependent manner.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3