Near-Isogenic Barley Lines Show Enhanced Susceptibility to Powdery Mildew Infection Following High-Temperature Stress

Author:

Kolozsváriné Nagy Judit,Schwarczinger Ildikó,Király LórántORCID,Bacsó Renáta,Ádám Attila L.,Künstler AndrásORCID

Abstract

Barley cultivation is adversely affected by high-temperature stress, which may modulate plant defense responses to pathogens such as barley powdery mildew (Blumeria graminis f. sp. hordei, Bgh). Earlier research focused mainly on the influence of short-term heat stress (heat shock) of barley on Bgh infection. In this study, our aim was to investigate the effects of both short- and long-term heat stress (35 °C from 30 s to 5 days) on Bgh infection in the barley cultivar Ingrid and its near-isogenic lines containing different powdery mildew resistance genes (Mla12, Mlg, and mlo5) by analyzing symptom severity and Bgh biomass with RT-qPCR. The expression of selected barley defense genes (BAX inhibitor-1, Pathogenesis- related protein-1b, Respiratory burst oxidase homologue F2, and Heat shock protein 90-1) was also monitored in plants previously exposed to heat stress followed by inoculation with Bgh. We demonstrated that pre-exposure to short- and long-term heat stress negatively affects the resistance of all resistant lines manifested by the appearance of powdery mildew symptoms and increased Bgh biomass. Furthermore, prolonged heat stress (48 and 120 h) enhanced both Bgh symptoms and biomass in susceptible wild-type Ingrid. Heat stress suppressed and delayed early defense gene activation in resistant lines, which is a possible reason why resistant barley became partially susceptible to Bgh.

Funder

Hungarian National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3