Changes in Metal-Chelating Metabolites Induced by Drought and a Root Microbiome in Wheat

Author:

Anderson Anne J.1ORCID,Hortin Joshua M.2,Jacobson Astrid R.3,Britt David W.1ORCID,McLean Joan E.2ORCID

Affiliation:

1. Department of Biological Engineering, Utah State University, Logan, UT 84322, USA

2. Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA

3. Department of Plants, Soils, and Climate, Utah State University, Logan, UT 84322, USA

Abstract

The essential metals Cu, Zn, and Fe are involved in many activities required for normal and stress responses in plants and their microbiomes. This paper focuses on how drought and microbial root colonization influence shoot and rhizosphere metabolites with metal-chelation properties. Wheat seedlings, with and without a pseudomonad microbiome, were grown with normal watering or under water-deficit conditions. At harvest, metal-chelating metabolites (amino acids, low molecular weight organic acids (LMWOAs), phenolic acids, and the wheat siderophore) were assessed in shoots and rhizosphere solutions. Shoots accumulated amino acids with drought, but metabolites changed little due to microbial colonization, whereas the active microbiome generally reduced the metabolites in the rhizosphere solutions, a possible factor in the biocontrol of pathogen growth. Geochemical modeling with the rhizosphere metabolites predicted Fe formed Fe–Ca–gluconates, Zn was mainly present as ions, and Cu was chelated with the siderophore 2′-deoxymugineic acid, LMWOAs, and amino acids. Thus, changes in shoot and rhizosphere metabolites caused by drought and microbial root colonization have potential impacts on plant vigor and metal bioavailability.

Funder

USDA National Institute of Food and Agriculture. AFRI project

NSF

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3