Genetic Improvement in Plant Architecture, Maturity Duration and Agronomic Traits of Three Traditional Rice Landraces through Gamma Ray-Based Induced Mutagenesis

Author:

Sao Richa,Sahu Parmeshwar K.,Patel Raviraj Singh,Das Bikram K.,Jankuloski Ljupcho,Sharma Deepak

Abstract

Mutation breeding offers a simple, fast and efficient way to rectify major defects without altering their original identity. The present study deployed radiation (gamma rays @ 300Gy)-induced mutation breeding for the improvement and revival of three traditional rice landraces, viz., Samundchini, Vishnubhog and Jhilli. Among the various putative mutants identified in the M2 generation, only three, ten and five rice mutants of Samundchini, Vishnubhog and Jhilli, respectively, were advanced to the M4, M5 and M6 generations, along with their parents and three checks for evaluations based on 13 agro-morphological and 16 grain quality traits. Interestingly, all the mutants of the three landraces showed a reduction in days to 50% flowering and plant height as compared to their parents in all the three generations. The reduction in days to 50% flowering ranges from 4.94% (Vishnubhog Mutant V-67) to 21.40% (Jhilli Mutant J-2-13), whereas the reduction in plant height varies from 11.28% (Vishnubhog Mutant V-45-2, Vishnubhog Mutant V-67) to 37.65% (Jhilli Mutant J-15-1). Furthermore, two, six and three mutants of Samundchini, Vishnubhog and Jhilli have increased their yield potential over their corresponding parents, respectively. Interestingly, Samundchini Mutant S-18-1 (22.45%), Vishnubhog Mutant V-74-6 (36.87%) and Jhilli Mutant J-13-5 (25.96%) showed the highest yield advantages over their parents. Further, a pooled analysis of variance based on a randomized complete block design revealed ample variations among the genotypes for the studied traits. In addition, all the traits consistently showed high to moderate PCV and GCV and a slight difference between them in all three generations indicated the negligible effect of the environment. Moreover, in the association analysis, the traits, viz., fertile spikelets/panicle, panicle length, total tillers/plant, spikelet fertility percent and 100-seed weight showed the usual grain yield/plant, whereas the traits hulling (%) and milling (%) with HRR (%) consistently showed high direct effects and significant positive correlations. The SSR marker-based genome similarity in rice mutants and corresponding parents ranged from 95.60% to 71.70% (Vishnubhog); 95.62% to 89.10% (Samundchini) and 95.62% to 80.40% (Jhilli), indicating the trueness of the mutants. Moreover, the UPGMA algorithm and Gower distance-based dendrogram, neighbour joining tree and PCA scatter diagram assured that mutants were grouped with their respective parents and fell into separate clusters showing high similarity between mutants and parents and dissimilarity among the 24 genotypes. Overall, the information and materials generated from the current study will be very useful and informative for students, researchers and plant breeders. Additionally, our results also showed that irradiation could generate a considerable amount of genetic variability and provide new avenues for crop improvement and diversification.

Funder

Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of mutant rice genotypes on growth cycle length and response to reduced water availability;Scientia Agricola;2024

2. Mutagenesis—A Tool for Improving Rice Landraces;Sustainable Landscape Planning and Natural Resources Management;2024

3. Genetic Improvement of Rural Landraces Through Mutation Research;Sustainable Landscape Planning and Natural Resources Management;2024

4. Use of Gamma Rays in Crop Improvement;Sustainable Landscape Planning and Natural Resources Management;2024

5. Application of Near Infrared Hyperspectral Imaging Technology in Purity Detection of Hybrid Maize;Applied Sciences;2023-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3