Application of Near Infrared Hyperspectral Imaging Technology in Purity Detection of Hybrid Maize

Author:

Xue Hang12,Yang Yang1,Xu Xiping1,Zhang Ning1,Lv Yaowen1

Affiliation:

1. College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. College of Electronic and Information Engineering, Beihua University, Jilin 132021, China

Abstract

Seed purity has an important impact on the yield and quality of maize. Studying the spectral characteristics of hybrid maize and exploring the rapid and non-destructive detection method of seed purity are conducive to the development of maize seed breeding and planting industry. The near-infrared spectral data of five hybrid maize seeds were collected in the laboratory. After eliminating the obvious noises, the multiple scattering correction (MSC) was applied to pretreat the spectra. PLS-DA, KNN, NB, RF, SVM-Linear, SVM-Polynomial, SVM-RBF, and SVM-Sigmaid were used as pattern recognition methods to classify five different types of maize seeds. The recognition accuracy of the models established by different algorithms was 84.4%, 97.6, 100%, 96.4, 99.2%, 100%, 98.4%, and 91.2%, respectively. The results indicated that hyperspectral imaging technology could be used for variety classification and the purity detection of maize seeds. To improve the calculation speed, using the principal component analysis (PCA) to reduce the dimension of hyperspectral data, we then established classification models based on characteristic wavelengths. The recognition accuracy of the models established by different algorithms was 80.8%, 86.8%, 98%, 94%, 96.8%, 98.4%, 94.4%, and 88.2%, respectively. The results showed that the selected sensitive wavelengths could be used to detect the purity of maize seeds. The overall results indicated that it was feasible to use near-infrared hyperspectral imaging technology for the variety identification and purity detection of maize seeds. This study also provides a new method for rapid and non-destructive detection of seed purity.

Funder

the Jilin Provincial Key Research and Development Project

the General Free Exploration Project of the Jilin Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3