Magnetic Iron–Improved Growth, Leaf Chemical Content, Yield, and Fruit Quality of Chinese Mandarin Trees Grown under Soil Salinity Stress

Author:

Alharbi KhadigaORCID,Alshallash Khalid S.ORCID,Hamdy Ashraf E.ORCID,Khalifa Sobhy M.,Abdel-Aziz Hosny F.ORCID,Sharaf Ahmed,Abobatta Walid F.ORCID

Abstract

Chinese mandarin fruits are an inexpensive and rich source of vitamin C. They have potential benefits in treating acute respiratory infections and mitigating inflammation in critical patients with COVID-19. In Egypt, citrus is the most important fruit tree but is sensitive to salinity stress, resulting in poor vegetative tree growth and reductions in productivity and fruit quality. Magnetic iron has emerged as a promising approach in the citrus tree industry, since it improves vegetative growth, yield, and fruit quality and alleviates salinity stress in Chinese mandarin trees grown in soils suffering from high salt stress. This research is aimed at studying the influence of adding magnetic iron (as soil treatment) on tree canopy growth, yield, and fruit quality of ‘Chinese’ mandarin trees. Therefore, the treatments were as follows: 0, 250, 500, and or 750 g of magnetic iron.tree−1. Our results indicated that all applications of magnetic iron significantly improved tree canopy volume, leaf total chlorophyll, relative water content, yield (kg.tree−1), and the fruit physical and chemical characteristics of Chinese mandarin. In contrast, leaf Na and Cl content, (%), proline, and total phenolic content were decreased by magnetic iron soil treatments. In respect to vegetative growth, our results indicated that adding magnetic iron at the concentration 750 g.tree−1 caused the best values of tree canopy volume. A similar trend was noticed regarding yield. The increase in yield attained was nearly 19%; the best values were obtained when magnetic iron were used at 750 g.tree−1. In conclusion, the application of magnetic iron can lead to improved fruit production and fruit quality of Chinese mandarin trees grown in salinity stress conditions.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3