Seed Priming with ZnO and Fe3O4 Nanoparticles Alleviate the Lead Toxicity in Basella alba L. through Reduced Lead Uptake and Regulation of ROS

Author:

Gupta NakulORCID,Singh Prabhakar Mohan,Sagar VidyaORCID,Pandya Alok,Chinnappa Manimurugan,Kumar Rajesh,Bahadur Anant

Abstract

The increased lead (Pb) content in the environment has an impact on all living beings, including plant growth and quality. The present study aims to investigate the protective roles of zinc (Zn)- and iron (Fe)- nanoparticles (NPs) in alleviating stress symptoms caused by lead (Pb) exposure in Basella alba seedlings. For this purpose, 15 different treatment combinations of seed priming with two NPs at 0 and 200 mg L−1, and five Pb levels (0, 4, 8, 15, 20 mM) were chosen. Pb stress (20 mM) was found to reduce seed germination by 72.8% and seedling growth, particularly root length, by 92% when compared to the control. Under different Pb concentrations, seed priming with ZnNPs (200 mg L−1) and FeNPs (200 mg L−1) increased seed germination by 34.7% and 54.9%, respectively, and root length by 152.9% and 252.9%, respectively. In 20 mM Pb stress, NPs primed seedling showed decrease in Pb content by 33.7% with ZnNPs and 32.6% with FeNPs. Increased Pb stress resulted in increased reactive oxygen species (ROS) generation (H2O2) and lipid peroxidation (MDA) compared to non-Pb stressed seedlings. However, increased antioxidants in the NPs treatments such as SOD, CAT, POD and proline content, scavenged these ROS. Considering all the parameters under study, priming alleviated Pb stress in the following order: FeNPs > ZnNPs > hydropriming > control. To summarise, seed priming with Zn- and Fe-NPs has the potential to alleviate Pb toxicity via reduced Pb uptake, ROS generation and lipid peroxidation as well as increased proline content and activation of antioxidant enzymatic system.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3