Author:
Kim Yi Rae,Han Jung Yeon,Choi Yong Eui
Abstract
Pinosylvin stilbenes are natural phenolic compounds found in the Pinaceae family and act as phytoalexins. Some pinosylvin stilbenes have strong nematicidal activity against pine wood nematodes (PWNs: Bursaphelenchus xylophilus). Here, we established the efficient production of two pinosylvin stilbenes, dihydropinosylvin monomethylether (DPME) and pinosylvin monomethylether (PME), by cell suspension culture of Pinus koraiensis after fungal elicitation. DPME and PME were found in small amounts (less than 40 µg/g DW) in the stem bark and leaves of P. koraiensis plants. Cell suspension cultures were established from the cultures of calli derived from mature zygotic embryos of P. koraiensis in 1/2 Litvay medium containing 2.2 μM 2,4-D and 2.2 μM BA. Two types of fungal elicitors, fungal cell extract (CE) and fungal medium filtrate (MF), were prepared from three species of fungi (Penicillium chrysogenum, P. pinophilum, and P. roquefortii). CE and MF treatments strongly stimulated the production of PME and DPME in cultured cells. The production of PME in suspension cells of P. chrysogenum, P. pinophilum, and P. roquefortii MF treatments after 3 days was 5734 µg/g DW, 4051 µg/g DW, and 6724 µg/g DW, respectively. Pinosylvin synthase (PkSTS) and pinosylvin O-methyltransferase (PkPMT) are key genes in DPME and PME biosynthesis. qPCR analysis revealed that the expression of the PkSTS and PkPMT in cultured cells was highly enhanced after fungal elicitor treatment. The cell extracts after MF treatment resulted in 92.5 ± 7.8% immobilization of the adult PWNs and 63.7 ± 3.5% immobilization of the juvenile PWNs within 24 h. However, control cell extracts without MF treatment showed 11.3 ± 1.4% nematicidal activity against adult PWNs. Our results suggest that pinosylvin stilbenes can be produced from the cell culture of P. koraiensis after fungal elicitor treatment and can be used as nematicidal compounds against PWNs.
Funder
Korea Forest Service (Korea Forestry Promotion Institute), Republic of Korea
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference39 articles.
1. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus;Mamiya;Ann. Rev. Phytopathol.,1983
2. Hirata, A., Nakamura, K., Nakao, K., Kominami, Y., Tanaka, N., Ohashi, H., Takano, K.T., Takeuchi, W., and Matsui, T. Potential distribution of pine wilt disease under future climate change scenarios. PLoS ONE, 2017. 12.
3. Pine Wood Nematode, Bursaphelenchus Xylophilus;Futai;Annu. Rev. Phytopathol.,2013
4. Nematode-vector relationships in the pine wilt disease system;Linit;J. Nematol.,1988
5. Current status of resistance breeding of Japanese pine species to pine wilt disease;Kurinobu;For. Sci. Technol.,2008
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献