Nitrapyrin Mitigates Nitrous Oxide Emissions, and Improves Maize Yield and Nitrogen Efficiency under Waterlogged Field

Author:

Ren Baizhao,Ma Zhentao,Zhao Bin,Liu Peng,Zhang JiwangORCID

Abstract

In order to explore the effects of nitrapyrin (N-Serve) application on greenhouse gas emission and nitrogen (N) leaching of a waterlogged maize (Zea mays L.) field, we investigated the effects of applying nitrapyrin on soil ammonium (NH4+-N) and nitrate nitrogen (NO3−-N) content, nitrous oxide (N2O) fluxes, and the warming potential (GWPN2O) in a waterlogged maize field. The design included three treatments: waterlogging treatment with only urea application (V-3WL), waterlogging treatment with urea and nitrapyrin application (V-3WL+N), and no waterlogging treatment applying only urea (CK). Our results revealed that waterlogging led to the increase of nitrate concentrations across the soil profile, thus potentially increasing N leaching and decreasing N use efficiency. The accumulated N2O emissions increased significantly in waterlogged plots compared to control plots, and maximum N2O emission fluxes occurred during the process of soil drying after waterlogging; this resulted in an increase in GWPN2O and N2O greenhouse gas intensity (GHGIN2O) by 299% and 504%, respectively, compared to those of CK. However, nitrapyrin application was able to reduce N2O emissions. Nitrapyrin application was also good for decreasing GWPN2O and GHGIN2O by 34% and 50%, respectively, compared to V-3WL. In addition, nitrapyrin application was conducive to reduce N leaching and improve N use efficiency, resulting in a yield increase by 34%, compared to that of V-3WL. The application of nitrapyrin helped to mitigate agriculture-source greenhouse effects and N leaching induced by waterlogging, and was a high N-efficient fertilizer method for a waterlogged field.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference50 articles.

1. The challenge of feeding 9–10 billion people equitably and sustainably

2. Climate change and China’s agricultural sector: An overview of impacts, adaptation and mitigation;Wang;Int. Food Agric. Trade Policy Counc. (IPC),2010

3. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the intergovernmental Panel on Climate Change,2007

4. Climate change 2021: The physical science basis In Contribution of Working GROUP I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,2021

5. Couplings between changes in the climate system and biogeochemistry;Denman,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3